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about 400 in the melt. The electrical conductivity of 
the solid14 at the melting point is 3X10 - 3 Or1 cm - 1 and 
the liquid18 is 8.4 Qrl cm"1, an increase of about 3000. 
Our observed increase in 2\(Li) is also large, but not 
as large as might be expected. We cannot say much else 
about molten LiF. 

V. CONCLUSIONS 

We have obtained jump frequencies of lithium and 
fluorine ions in a LiF single crystal over a wide tempera
ture range with an accuracy comparable to conductivity 
and diffusion methods. As an added advantage, both 
quantities could be obtained for the same crystal by the 

I. INTRODUCTION 

THE possibility that nuclear magnetic resonance 
would be a useful technique for the study of 

atomic diffusion was suggested in the early paper of 
Bloembergen, Purcell, and Pound1 and such studies 
have been made on a number of solids. The simplest 
theory of relaxation due to diffusion can be expressed 
by the formulas2 

rr^^^r^i+cooVe2)-1, (i) 
Tr1** W)rcX J [ l + ( l+cooW) ' 1 ] . (2) 

Here co0 is the resonance angular frequency, r c is of the 
order of the jump time for diffusion, and o>» is the 
strength of the interaction of the nucleus with the per-

* Present address: Columbia University, Hudson Laboratories, 
Dobbs Ferry, New York. 

1 N. Bloembergen, E. M. Purcell, and R. V. Pound, Phys. Rev. 
73, 679 (1948). 

2 C. P. Slichter, Principles of Magnetic Resonance (Harper and 
Row, Inc., New York, 1963). 

same set of measurements. I t should be possible to ex
tend this work to doped LiF crystals, or to other 
crystals containing nuclei with small quadrupolar in
teractions and reasonable magnetic moments. 
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turbation responsible for relaxation, in frequency units. 
These expressions are based on the assumption of an 
autocorrelation function for the interaction of the 
simple form (a>;2) exp(—//rc), as discussed in Sec. 5.7 
of Ref. 2. They are applicable only to the "motionally 
narrowed" region of temperature; that is, where 
Tc^Ccor1. This is the only region we will consider in this 
paper. For nuclei having spin J or a small electric 
quadrupole moment, relaxation occurs via the magnetic 
dipolar interaction between spins, and co* is of the order 
of the rigid lattice linewidth, typically a few kc/sec. 
If relaxation occurs because of electric quadrupolar in
teractions, co; may be many Mc/sec. For systems in 
which o)i is reasonably well known, Eqs. (1) and (2) 
can predict r c from T\ and JT2 measurements to within 
an order of magnitude. For more precise results, it is 
necessary to use a more complicated correlation function 
based on a detailed model of the microscopic diffusion 
process. We will develop such a formulation in this 
paper. We restrict ourselves to the case of relaxation 
via magnetic dipolar interactions, because the form and 
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magnitude of these interactions are well known, at 
least for light nuclei, where electron-coupled spin inter
actions are negligible. In principle, this formulation 
could readily be extended to the case of quadrupolar 
relaxation due to vacancy motion, but this refinement of 
the simple theory did not seem warranted for that case, 
in view of the relatively poor knowledge of the quadru
polar interaction strength. 

Torrey3 has developed a detailed theory of dipolar 
relaxation via translational diffusion, based on the 
BPP theory of relaxation1 and applicable to a single spin 
species in a bcc or fee lattice. Since then, the theories 
of BPP and Wangsness and Bloch4 have been genera
lized and applied to complex systems. We will use the 
generalized theory,5'6 applied to two or more spin 
species diffusing in a NaCl lattice and also in a fee 
lattice. Our starting point is similar to that of Torrey, 
but our method of calculation is different, being re
stricted to solids and designed to predict the large 
angular variations of 7 \ and T2 which have been 
observed.7 

II. GENERAL METHOD 

A. Model for Diffusion 

A solid typically contains a fraction of vacant sites 
which is so small that the number of vacancies close to 
each other is negligible. Thus, the probability that a 
vacancy will jump in a given direction is independent of 
its previous history. This is not true for the atoms which 
diffuse as a result of vacancy motion; for example, an 
atom which has just jumped from one site to a neighbor
ing vacant site has a probability C~l, where C is the 
like-neighbor coordination number of jumping im
mediately back to where it came from. This correlation 
between successive jumps reduces the diffusion coeffici
ent relative to that expected for a purely random walk 
process by a factor of the order of 1-C""1. The effect of 
correlations on the diffusion coefficient has been cal
culated precisely by a method due to Bardeen and 
Herring8 and Lidiard.9 

The calculation of these correlation effects on spin 
relaxation is a more difficult problem because we are 
concerned with the relative motion of pairs of nuclei. 
To make a precise theory, explicit account must be 
taken of the vacancy mechanism. A relative displace
ment of two nearby spins occurs when a passing vacancy 
interchanges with one of them. The vacancy jumps on 
very rapidly, but there is a significant probability that 

3 H . C. Torrey, Phys. Rev. 92, 962 (1953); 96, 690 (1954); 
henceforth referred to as Torrey. 

4 R. K. Wangsness and F. Bloch, Phys. Rev. 89, 728 (1953). 
5 A. Abragam, The Principles of Nuclear Magnetism (The 

Clarendon Press, Oxford, England, 1961). 
6 A. G. Redfield, I.B.M. J. Res. Develop. 1, 19 (1957). 
7 M. Eisenstadt, preceding paper, Phys. Rev. 132, 630 (1963). 
8 J. Bardeen and C. Herring, in Imperfections in Nearly Perfect 

Crystals (John Wiley & Sons, Inc., New York, 1952). 
9 A. B. Lidiard, in Handbuch der Physik, edited by S. Fliigge 

(Springer-Verlag, Berlin, 1957), Vol. 20, p. 327. 

it will return once or more to the same spin (or to the 
other spin if they are both on the same sublattice) before 
wandering away to infinity. The time for these inter
changes is small compared to the time the two spins 
must wait before another vacancy comes by, and all that 
matters is their relative positions after the vacancy has 
wandered away; the precise trajectory of the vacancy 
is irrelevant. Probabilities for various relative displace
ments of two spins resulting from the visit of a passing 
vacancy might be calculated by considering all possible 
trajectories of the vacancy, but to use these probabilities 
to compute a relaxation time would be a formidable 
task. 

Instead, we use a simplified model of the solid in 
which nuclei are assumed to diffuse about independently 
on their appropriate lattice, with a jump probability 
or jump frequency v which is constant in time and 
independent of their previous history.10 Estimates of the 
effect of correlations will be given in Sec. IV. Torrey's 
theory also neglects correlations, and his diffusion model 
is similar to ours. 

B. Theory of Relaxation 

Abragam5 has given a concise treatment of the gen
eral theory of relaxation via the dipolar interaction and 
we will use his results as our starting point. We will 
restrict our treatment to cubic crystals and assume 
there is no static quadrupolar interaction or quadru
polar relaxation. We suppose that there are two nuclear 
species present on the NaCl lattice which we label / 
and S, each on its own fee sublattice. The case of a 
single species on a fee lattice can be immediately ob
tained from the NaCl results. We neglect the possibility 
that measurements of Ti for one species will produce 
transient nuclear polarization of the other species. A 
calculation by us of these cross relaxation effects in
dicate that for typical static magnetic fields used in 
relaxation experiments they are likely to be negligible. 

The Hamiltonian of the spin system consists of the 
usual Zeeman interaction plus the sum over pairs of 
spins of the classical dipolar interaction. The dipolar 
interaction between two spins i and j can be most 
conveniently written as the sum 

mi3-=ZFi3
Xq)Aij^. (3) 

Q 

The sum over q is from — 2 to + 2 , and AiQ) is a spin 
operator given in Abragam,11 which connects spin states 
of the spins i and j differing by hq in total angular 
momentum (w4+/%). The F ( e ) are given by 

^•/0) = ^ r 3 ( l - 3 c o s 2 ^ y ) , (4) 

Fi3{l)=*rifz smdij cosdij exp(—i<pi}) , (5) 

10 In this paper v denotes a jump frequency in sec-1, and a> 
denotes a resonance frequency in rad-sec-1. 

11 See Ref. 5, p. 289. 
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/ ty2 ) = r«f* sin204i e x p ( - ~ 2 ^ ) , (6) 

FJ-OmFijM*. (7) 

Here r#, 0ty, and <p# are polar coordinates of the vector 
tij connecting positions of spins i and j ; the polar axis 
is the magnetic field direction and the azimuthal plane 
is arbitrary. Strictly speaking, F(q) is a lattice operator 
and we should solve the lattice Hamiltonian to deter
mine its properties. Since this is impossible in practice, 
we treat F(q) as a classical quantity which varies 
randomly as the spins i and j move about the lattice. 

The relaxation times are obtained in terms of correla
tion function of the F{q\ defined by the equation 

GiU) (T) = W * > ( W « > * ( f + T ) > . (8) 

Here Fi/q)(t) is the value of Fi3
Xq) at time f> and the 

average is carried over all time /, or equivalently over 
an ensemble. The nuclear spin relaxation times are 
given by certain sums of the Fourier transforms (spec
tral densities) of the G(q\ defined by 

Jij^(u)= f Gi^(T)e-^dT. (9) 
J -co 

Before writing expressions for the relaxation times, 
it is convenient to use the fact that identical spins will 
move in an identical way in a statistical sense. This 
means that Gij{q) and J^q) will be the same for all 
equivalent pairs of spins i and j . Thus, to calculate 
relaxation times for the I species we need know only 
the spectral density functions 

*<«> = A 7JV«>, (10) 

&(<!) = N J Jq\ (11) 

where spins i and j are any two /-species spins, k is an 
S-species spin, and for convenience we multiply by N, 
where N is the total number of / sites (or S sites). Then 
the relaxation times of the I species are given by 

T r 1 - | 7 / ^ 2 / ( / + l ) / r { ^ ( 1 ) M + ^ ( 2 ) ( 2 a > 7 ) } 

+ |5C^(co r)+f5C(2>(cor+^)}, (12) 

T V ^ Y i W C T + l ) / ! 

X (f < J ( 0 ) ( 0 ) + V ^ ( « / ) + f <J(2)(2coz)} 

+ T i W ^ ( S + l)fa {*JC«» ( 0 ) + ^ ( 0 ) (a>i-a>s) 

+ !x(1>(coJ)+fX(1)(cus)+t5C(2)(coi+co^)} . (13) 

Here J, 71, CO/, and fi are the spin, gyromagnetic ratio, 
resonance frequency, and fractional isotopic abundance 
of the / species; similarly for the S species. In comput
ing sum and difference frequencies co/rbcos it is impor
tant to assign opposite signs to ooi and cos if 7 i and ys are 
of opposite sign. Expressions for the relaxation times of 

the S species are obtained by reversing / and S. Equa
tions (12) and (13) are obvious generalizations of Eqs. 
(77), (88a), (79), and (89) in Abragam.12 The formidable 
appearance of (12) and (13) is somewhat misleading; 
to the approximation we shall use, the calculations of 
the various terms are all quite similar, and many can 
be neglected. 

The central objective of this work is to calculate the 
correlation functions G(T) or, more precisely, their 
Fourier transforms. We note first that lattice vibrations 
can be ignored. I t is well known that lattice vibra
tions produce negligible relaxation in themselves; 
thus the dipolar interaction between jumps can be re
placed by its value averaged over many lattice vibra
tions, since the jump frequency is always slow compared 
to the lattice frequency. This average interaction is 
equal to the interaction the spins would have if they 
were sitting stationary on their equilibrium lattice 
points.13 Thus, we assume that the spins are stationary 
between jumps. 

We will work in a coordinate system in which spin i 
of the / species is fixed at the origin (we will call this 
the reference spin) and the other spinj or k moves about, 
one lattice spacing at a time. If we wish to calculate 
#(a)(co), we consider the other spin (which we will call 
the moving spin) to be jumping about on the I lattice, 
one of whose points is the origin. In this relative coordi
nate system the probability ju that the moving spin will 
jump is ju = 2^i, where vi is the jump probability or jump 
frequency for a single / spin in the usual fixed coordinate 
system. 

To calculate 3C(s) (a>), the moving spin k is confined to 
the S lattice, which is displaced from the origin or 
reference spin. The jump probability in the relative 
coordinate system is ix^vi+vs- In what follows, we 
will not explicitly discuss calculations of the JC(g) since 
they are similar to those of the 3(q). 

If we denote points on the / lattice by I and m we can 
express the correlation functions as 

G<«>(r) = i ; Pi(t)F^P(l,t; m9t+r)Fm^\ (14) 
lm 

Here Ft
(«> is equal to Fifq){xi3) for r ^= r z , Pi(t) is the 

probability that the moving spin occupies the point / 
at time /, and P(/ , / ; m,t+r) is the conditional pro
bability of finding it on m at f+T if it was on I at time t. 

The general expression (14) simplifies considerably in 
in our model which ignores correlations. The probability 
of occupancy of all points is the same, so 

Pi(t)=N-K (15) 

Since the direction of successive jumps is random, and 

a See Ref. 5, Chap. VIII. 
13 This true to second order in the rms lattice vibration ampli

tude only for cubic crystals, provided correlations in the motion 
of neighboring atoms are ignored. This follows quite generally 
from the fact that the dipolar interaction 3Cij(rij) obeys the 
equation Vr23^ij(rij) =0 . 
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the jump probability is time-independent, we can re
write the conditional probability as the sum 

P(f,t; I I M + T ) = Z ; pn{r)Pn{rim) . (16) 
n 

Fim
a) = sin0zcos0zsin0mcos0mcos(<£>z— <pm)/ri3rm

3, (21) 

Flm™ = sm20;sm20wcos (2 <pi- 2 <pm)/n*rm*. (22) 

14 W. Feller, An Introduction to Probability Theory and its 
Applications (John Wiley & Sons, Inc., New York, 1958). 

15 A. fedelyi, Tables of Integral Transforms (McGraw-Hill Book 
Company, Inc., New York, 1954), Vol. 1, p. 14. 

16 Equation (18a) can be obtained if the sum is replaced by 
JC(l+«wA)n+1+(l-W")B+1]. 

:- Here rh 6h <pi are polar coordinates of the vector tt 

connecting the reference spin with the point / ; the polar 
axis is the field direction. The method of evaluating (19) 

' is discussed in Sec. I I I . 

III. METHOD OF CALCULATION 

We now come to the heart of the problem, which is 
the calculation of the spectral densities 6 and 3C. We 
achieve relative ease of calculation by restricting our 
calculation to solids, and by avoiding the domain where 
w//x«l. We use two different methods of calculation, 
one for the high-frequency region (CO//JCM) and another 

Here pn(r) is the probability that the moving spin will 
make exactly n jumps in a time r, and Pn(fim) is the 
probability that a random walk of exactly n steps will 
end on m if it started on /. Pn(fim) is a function only of 
the distance r\m between / and m, and is equal to the 
number of ^-step paths connecting I and m, divided by 
Cn, the total number of n-step paths starting from /. 
In calculating Pw(rzm) for the like-neighbor case, we do 
not exclude paths through the origin, even though 
these are physically impossible. This greatly simplifies 
the calculation, and probably does not affect the final 
results significantly. Of course, the sum over I and m 
in Eq. (14) excludes the origin. The probability pn can 
be shown to be the nth. term of the Poisson distribution14 

pn(T)=M«exp(-iJLT)/nl (17) 

T h e Four ier cosine t ransform of pn is15 

- o o 2 / 1 \ n + 1 

<5n (ay*) s= 2 / pn ( r ) coscordr = -f ) 
Jo J U \ 1 + W 2 / J U 2 / 

X Z ( -D1 ) ( - ) , (18) 

where the usual binomial coefficient notation is used. 
The $n can be reduced16 to the analytic expression 

3F»= 2fJr
1co$[(n+ l)^]cosn + ty, (18a) 

where ^ = tan - 1 (a>/n). 
Combining (9) and (10) with (14)-(18) and assum

ing G{q) (T) is an even function of r as required by the 
principle of microscopic reversibility, we obtain 

5 C t f ) ( « ) = E ffnCM E Pn(rim)Flm^ , ( 1 9 ) 
n Im 

where Fim
(q) is an abbreviation for the real part of 

FiC9)FmM*. Only the real part of F^FJ^* enters into 
the sum (14) since its complex conjugate Fm

{q)Fi{q)* 
occurs with the same coefficient. This latter term cor
responds to the inverse (or time reversed) path and 
both paths will have equal probabilities at equilibrium. 
The Fim

(q) are given by 

FiJ»= ( l -3cos 2 ^) ( l -3cos 2 ^ m ) /nV w
3 , (20) 

C. Symmetry 

It is useful to state cubic symmetry requirements on 
T± and T2 before proceeding. Any relaxation rate will 
have the form 

T1-\T2~^C1+C2E cos*fc, (23) 

where cos & is the ith direction cosine of the magnetic 
field with respect to the crystal axes. This form follows 
from the fact that the angular part of the Fim

iq) can 
be represented as a vector function of r/, rm and Ho. 
For example, 

F ^ = ( r r H 0 ) ( r m . H o ) ( r , X H o ) 

. ( r m X H 0 ) A ^ W . (24) 

If we rewrite (24) in Cartesian coordinates coinciding 
with the cubic axes, only direction cosines of Ho appear, 
and only up to the fourth power. Any cubically sym
metric sum of the Fim

(q) such as #((z) can contain only 
even powers of the direction cosines of Ho because of 
reflection symmetry, and all such sets of direction 
cosines reduce to the form (23). 

Turning to the limit of high temperature, it is well 
known that in this limit 7 \ = r 2 . I t does not seem to 
have been stated in the literature that in this case T% 
and T2 are independent of angle if there is cubic sym
metry. (For noncubic symmetry neither statement is 
true.) The relaxation times approach constant values 
independent of Ho when the resonance frequency is 
small compared to the jump frequency. Thus we first 
study how the magnetization behaves in zero external 
field, and then carry the result for zero field over to 
finite field. Suppose that at t—0 the field is turned off. 
Then the magnetization is expected to obey a linear 
equation : 

dM/dt=-WM. (25) 

Here W is, in general, a tensor; it is a scalar T{~1 for a 
cubic crystal. Thus, in zero field T\ is isotropic. In 
finite field the usual terms 7 M x H o + J ^ M 0 are added, 
but T\ will not change (and thus will remain isotropic) 
as long as 7H0 is much less than the inverse of the cor
relation or jump time. In the same limit this argument 
shows Ti= T2. 
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for the low-frequency region (co//x<<Cl). The co occurring 
in the previous sentence refers to those frequencies 
which appear as arguments of the spectral densities in 
Eqs. (12) and (13), and may be multiples, sums, or 
differences of cor and cos, or zero. 

In the low-temperature limit, where co/±co,s//z»l, the 
high-frequency approximation is used to calculate T\ 
while the low-frequency approximation is used to cal
culate T2. The latter statement follows because <T(9)(0) 
^>3(q)(o)) if o£^>fx. Of course, the present theory is only 
valid for T2 in the "motionally narrowed" limit, in 
which Ti is considerably greater than its rigid lattice 
value. At high temperature, defined by the condition 
cojd=co /̂/i<<Cl, the low-frequency approximation is used 
for both T\ and JT2. At intermediate temperatures the 
spectral densities might be interpolated with some 
function similar to (1). We will not discuss the inter
polation procedure further, but we remind the reader 
that any interpolation must be consistent with sum 
rules such as Eqs. (71) and (73) of Torrey. The inter
mediate temperature region can also be treated syste
matically using (18a), but the labor involved seems 
unjustified in view of the uncertainties introduced by 
correlation effects, as discussed in Sec. IV. 

A. High-Frequency Approximation 

I t will be seen from (18a) that in the limit co//x)>>l, 
^o(co) and ^(co) are much greater (by a factor co2//z2 

or more) than ^(co) for n> 1. The sum of Pn(rir^)Fim
{q) 

can be shown to decrease with increasing n, thus, only 
the terms with n=0, 1 in (19) need be retained. Since 
Po(rim) = dim, and Pi(rim) = C~\ if and only if I and m 
are nearest neighbors, we have 

4<«>(«) =—JS Fu^-C-ij: VFlm^\ . (26) 
CO2 I Im J 

To get (26) we used the fact that for CO >̂M, ^I(CO) 
= — 3r2(co) = 2ju/co2. The superscript on the second sum 
is to indicate that the sum is only over points I and m 
which are nearest neighbors to each other. Equation 
(26) is identical to Torrey's Eq. (76). 

The sum in (26) has been evaluated for two field 
orientations and the results are given in Table I. The 
first summation was carried over points / which are 
first through third neighbors of the origin, while the 

TABLE I. Lattice sums needed to evaluate spectral densities in 
the limit of high frequency. The numbers given in this table corre
spond to 0o6 times the sums in the curly bracket of Eq. (16). Here 
ao is the nearest neighbor (Na to CI) distance. 

Sum given 

(like neighbor) 
ao6(o)2/2iu)aC^)(a;) 
(unlike neighbor) 

Orientation 

[100] 
[110] 
[100] 
[110] 

q = 0 

0.98 
1.36 

13.7 
3.82 

1 

0.248 
0.206 
0.087 
1.19 

2 

0.86 
0.86 
4.75 
3.64 

double sum was carried over all pairs / and m for which 
either / or m is a nearest neighbor to the origin. The 
values in Table I are probably a few percent larger than 
the sum over all lattice points. The value of the sum 
for any orientation can be found using (23) if its values 
for two orientations are known. 

B. Zero-Frequency Approximation 

In the limit of zero frequency all the #>*{<*,v) approach 
the same value 2/p. Then (19) can be rewritten as 

2 
J ( 5 ) ( 0 ) = - E ^ ( ^ W , (27) 

where 
Z(rft») = 2 : P ( r f a l ) . (28) 

n 

I t is interesting to discuss the physical meaning of 
the quantity Z(rim). With the aid of (16) and (18a) 
we find 

/.OO 

Z(rlm)=fx P(J,0;tn,T)dT. (29) 
Jo 

Thus, Z(rim) is the jump frequency multiplied by the 
average time a randomly walking particle spends on 
point m after initially being placed on point I. In other 
words, Z{rin) is the average number of times a particle 
will visit m, if it randomly walks from I. 

Z(f) has been evaluated17 directly (see Appendix A) 
for r—0, v2ao, and 2#o (where ao is the Na to nearest CI 
distance) and it is found that Z (0 )= 1.347; Z(V2ao) 
= 0.347; and Z(2a0) = 0.231. For r>2a0 we used the 
asymptotic form Z(r) = 3ao/2irr which is obtained from 
the fact that for large rim, P(lfi; w,r) must be a solution 
of the diffusion equation: 

P(Z,0; m,r)^2a0
3(47r JDr)-3 / 2exp(-r2 /4r)r). (30) 

Setting the diffusion coefficient equal to Z}=|a0
2M> and 

using (29), we get the asymptotic result. This approxi
mation differs from our directly calculated result by 
only 3 % for r=2ao. 

Using these values of Z(r), the sum (27) was obtained 
for # = 0 only and for two field orientations. The sum 
was evaluated point by point for the first three sets of 
like and unlike neighbors of the reference spin; the 
important (~30%) contribution of more distant points 
was obtained by averaging over field orientation and by 
converting lattice sums to volume integrals. Negligible 
error is probably introduced by these approximations; 

17 Calculation of Z(0) was discussed by G. Polya, Math. Ann. 
84, 149 (1921). Montroll has shown analytically that Z(0) is given 
by an integral which has been evaluated by G. N. Watson and is 
equal to 9 [ r (J)]6(214/37r4)"1 = 1.3446610732. See E. W. Montroll, 
in Applied Combinatorial Mathematics, edited by E. F. Beckenbach 
Qohn Wiley & Sons, Inc., New York, (to be published)]. Montroll 
also gives Z(0) for the bcc and sc lattices, and gives an analytic 
integral form for Z(r). Evaluation of Z(r) to the accuracy required 
here is probably more easily accomplished with the approximations 
described in present article than with these integral forms. 
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most of the orientation dependence comes from the 
contribution of points nearest the origin. 

These approximations are detailed in Appendix A; 
the results of this calculation are (aoV/2)^(0)(0) = 2.71 
and 3.27 for Ho in the [100] and [110] directions, 
respectively, and (a0V2)3C (0)(0)= 12.76 and 4.44 in the 
[100] and [110] directions. 

C. Low- and High-Temperature 
Approximations 

The low-temperature limits for Ti and T2 are readily-
obtained by substituting the above results and Table I 
into Eqs. (12) and (13). 

The high-temperature limit requires more discussion. 
Since T\ and T2 are isotropic, field angular averages of 
the # (s) and 3C(e) can be used. In Appendix A we show 
that the values of Fim

{q\ averaged over field orientation 
(but keeping r* and rw constant) are given by 

= (f co sW— §Vz~Vw~3, (31) 

where aim is the angle between ti and rm. Since (# (o)), 
(#(1)), and (#(2)) are in the ratio 6:1:4, we obtain from 
(12) and (13), 

rr1=r2-1=f^J(^)(0))+f^^^°)(0)), (32) 
where 

^ 7 - 7 i 4 ^ 2 / ( / + l ) / r ? (33a) 
and 

As=yfys^S(S+l)fs: (33b) 

The 3(q) and 5C(e) must have angular variations of the 
form (23), so that their angle average is 0.8 times their 
value for Ho in the [110] direction plus 0.2 times their 
[100] direction value. This fact with Eq. (31) can be 
used to check sums such as those of Table I. 

IV. EFFECT OF CORRELATIONS 

So far we have calculated T\ and T2 for a simple but 
slightly unrealistic model characterized by jump pro
babilities vi and vs- I t has been implied that the theory 
developed would be reasonably accurate if the true 
jump probabilities were used for vi and vs- By true 
jump probability, we mean the average number of 
jumps per second which an atom makes. This is the 
quantity inferred directly from ionic conductivity meas
urements, and is equal to the vacancy jump probability 
multiplied by vacancy concentration. We now discuss 
qualitatively the validity of this assumption for va
cancy-induced diffusion (similar remarks apply to inter
stitial diffusion), and estimate the corrections which 
must be made in order to take account of the correla
tions in the probabilities of successive atomic jumps. 

Correlations in the directions of successive jumps are 
known9 to reduce the diffusion coefficient for the fee 
lattice by a factor of 0,78 relative to the random walk 

value. These correlations arise because once a vacancy 
has interchanged with an atom there is a significant 
probability it will interchange with the same atom 
again, and if so it is likely to return the atom toward 
the general direction from which it came. 

These directional correlations are also important for 
nuclear relaxation, but there is another, possibly more 
important, correlation which is irrelevant for diffusion. 
Atomic jumps have a greater than random tendency to 
be bunched into groups of two or more, each group 
being produced by a single vacancy. In nuclear relaxa
tion we are interested in the time scale for successive 
jumps since we deal with temporal correlation func
tions, and this bunching effect must be taken into 
account. 

First, consider the motion of a single spin j caused by 
a single vacancy. Suppose the vacancy has walked 
randomly from some distance and has jumped to the 
site occupied by spin j displacing it. The probability 
per unit time of the initial displacement is very small, 
being of the order of vv/N, where vv is the vacancy jump 
rate; but subsequently there is a high probability (of 
the order of \) that the spin j will be displaced one or 
more times by the same vacancy before the vacancy 
diffuses away to infinity. We call the individual spin 
displacements "jumps," and a series of such displace
ments produced by a single vacancy an "encounter." 

I t is of interest to know the average number of jumps 
per encounter. Despite the differences between this 
situation and that considered above in connection with 
the zero-frequency approximation, it can be shown that 
the average number of jumps per encounter is just the 
quantity Z(0) = 1.347 mentioned there and calculated 
in Appendix A. This means that a spin j , once displaced 
by a vacancy, will be displaced an average of 0.347 
times again by the same vacancy. 

These subsequent jumps are likely to occur close in 
time after the initial jump (the probability that the 
vacancy will return to spin j after the vacancy makes 
100 jumps is only about 0.02). In most cases, only the 
total displacement per encounter will enter into the 
result; the position which a spin may occupy between 
jumps during a single encounter has negligible influence 
on dfq) because the spin spends so little time (of 
order 10/vv) at such an intermediate position, compared 
to the time (>104/*>v) it spends between encounters. 

During an encounter a spin may be displaced by one 
like-neighbor distance V2a0; or it may be displaced more 
than this distance or jump back to its original position. 
Probabilities for these various displacements might be 
computed along the lines outlined by Bardeen and 
Herring,8 but instead we may guess that the probability 
of zero displacement is about 0.1, that of unit (v2#o) 
displacement is about 0.8, and the probability of more 
than unit displacement is about 0.1. A spin having a 
jump frequency of vi experiences vi/1.347 encounters 
per second; of these only about 0,9 vij 1.347 result in a 
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net displacement of the spin, and most of these dis
placements are unit displacements. 

Turning now to the effect that these correlations in 
jump probabilities have on the spectral densities 6{q) 

and 3C((z), we consider first the Xiq\ which result from 
unlike neighbor interactions. Since the two spins under 
consideration diffuse on different sublattices, the jumps 
of one spin are completely uncorrelated with those of 
the other (at the usual low-vacancy concentrations), 
hence, the two spins can be considered separately. 

Consider first the high-frequency limit. The quantity 
V^vi+vs multiplying the first sum in (26) is just the 
probability per unit time of a relative displacement (of 
any magnitude) of one spin relative to another. This 
probability is reduced by the factor 0.9/1.347 ~ 0.7 
deduced above. The second term in (26) should pre
sumably be multiplied by about 0.8/1.347, since spin 
j makes about (0.8/1.347)vi single displacements per 
second. Since displacements of more than v2#o are 
possible in a single encounter, there should be added to 
(26) double sums with I and m separated by more than 
v2a0, multiplied by numbers less than yo~. The net 
result is to multiply (26) by about 0.7, since the first 
sum in (26) is at least ten times the second, and opposite 
in sign. 

In the zero-frequency limit, the terms in (27) with 
l=m are still the most important in the sum, but terms 
for which li^m and I or m are far from the origin are also 
significant. Most of these latter were handled with the 
implicit use of the diffusion equation, of which (30) 
is the solution. The correlation correction to the dif
fusion coefficient is 0.78, so the net correction to (27) is 
presumably to multiply /z by between 0.7 and 0.78 

Correlation effects are likely to be even more impor
tant for like-neighbor interactions (and also for chemi
cally identical unlike isotopes). Here both spins i and j 
must be considered as taking part in a single encounter. 
If spin j is the first to be displaced by a given vacancy, 
it will make 1.347 jumps as before, and spin i will make 
Z(r) jumps, where r is the initial distance between i and 
j . Thus, there are Z(0)+Z(r) relative jumps per en
counter. Since there are 2 *>/(relative) jumps per second 
there must be 2 J T [ Z ( 0 ) + Z ( / ) ] ~ 1 encounters per second 
of a single vacancy with the two spins i a n d j . This is in 
contrast with 2vi relative displacements in the random 
walk model. The probabilities for various relative dis
placements resulting from a single encounter are likely 
to be roughly the same as for a single spin; the probabil
ity for zero displacement and for more than unit dis
placement may be somewhat greater in the present case. 
Taking the probability for zero displacement in an 
encounter to be 0.1 as before, we conclude that the 
high-frequency approximation result (26) should be 
multiplied by about 0 .9/[Z(0)+Z(v2a 0)«0.55. Here 
we use the value of Z(r) appropriate to the nearest 
neighbor because terms for which / is nearest to the 
origin are by far the most important in (25). The zero-

frequency result (27) should be divided by a number 
which is between the high-frequency correction of 0.55 
and the diffusion coefficient correction of 0.78. 

We have tried to show that correlation effects may 
play an even greater role in nuclear relaxation than in 
tracer diffusion. I t is to be hoped that relaxation meas
urements will be as useful as diffusion measurements for 
the elucidation of diffusion mechanisms in solids.18 

Unfortunately in most cases dipolar relaxation is par
tially obscured by quadrupolar and electronic relaxa
tion, making such studies difficult. 

V. SUMMARY OF RESULTS 

In the high-field, low-temperature limit the results 
of this calculation can be summarized by the formulas 

Tr1 =j\A Tao~Bvicx)r2+A sa>(T&(vi+ vs) 

Xlh^I-ws)~
2+klcI-"+k2^I+^s)~2l, (34a) 

Tr^jiAxao-'vi^+kU sao~&(vi+ vs)'1. (34b) 

The numbers j and k are tabulated in Table I I for the 

TABLE II. Constants occurring in Eqs. (34) and (35) 
for three field orientations. 

Lat t ice Orientat ion ji ko k2 

NaCl 

fee 

moo: 
[110] 
cm: 
[100] 

2.78 
2.53 
2.45 
2.78 

2.28 
0.64 
0.09 
0.163 

0.26 
3.56 
4.66 
0.744 

7.12 
5.45 
4.90 
1.29 

1.03 
1.23 
1.30 
1.03 

4.25 
1.48 
0.56 
0.92 

3.96 
3.96 
3.96 
3.96 

10.2 
10.2 
10.2 

5.27 
[110 
[111 

2.53 0.226 0.618 1.30 1.23 1.09 3.96 5.27 
2.45 0.247 0.576 1.30 1.30 1.15 3.96 5.27 

NaCl lattice, and also for the fee lattice of cube edge 
2#o containing two isotopes. The other terms have been 
previously defined. These relaxation times are those of 
the / species, assuming that the S species remains at 
thermal equilibrium. This assumption is likely to be 
valid unless the difference in resonance frequencies 
| oil | — | o)s I of the two species is small. The sum and 
difference frequencies o>i±co,s are computed using op
posite signs for coj and cos when yi and 73 have opposite 
signs. 

In the low-field, high-temperature limit the calcula
tion predicts 

Trl= Tr^Mm-^+k^sa^Kvi+vs-1). (35) 
These formulas by no means exhaust the applications 

of our calculations. They are applicable whenever vi 
and vs are not of the same order of magnitude as cor, 
cos, or ccizLcos' Dynamic polarization of the S species 
through saturation of the / species could be easily 
treated, using Eq. (87) and (88).12 

These results were obtained assuming that the / and 
S species walk randomly with jump probability vi 
and vs- If account were taken of the correlation in 

18 P. G. Shewman, Diffusion in Solids (McGraw-Hill Book 
Company, Inc., New York, 1963). 
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direction of successive jumps of the nuclei, and of the 
tendency of jumps to occur close together, the results 
will be altered, as discussed in the previous section. 
For the NaCl lattice, j \ will be multiplied by about 0.55 
and ko, ki and k% by 0.75 ;j\ and j * will be divided by 
roughly 0.65, and kz and k± by 0.75. For the fee lattice 
jh ^o, ki, and &2 will be multiplied by about 0.55 and 
jz, 7*4, kz, and ki divided by roughly 0.65 

This calculation is in good agreement with Torrey's 
calculation of T\ in the fee lattice. In the high-field 
(low-temperature) limit our result for Tf1 is 5 % 
greater than that predicted from Torrey's Eq. (80). 
The discrepancy probably represents an error in our 
result due to omission of all but near neighbors in 
evaluating the second sum in (26); the error would be 
less for the 3C((z)(co) and in either case it is small com
pared to the correlation correction discussed in Sec. IV. 
In the low-field (high-temperature) limit our calculation 
yields a value for T-r1 which is 18% larger than that of 
Torrey. This is reasonable agreement considering the 
differences between our respective models. The low-
temperature angular dependence of T\ and T2 is small 
for the fee lattice, according to our theory, but it is 
easy to see from (26) that for the bec lattice the angular 
variation should be large (of the order of 2:1). No 
indication of such angular dependence has been re
ported in measurements19 on bec metals. 

APPENDIX A: DETAILS OF THE ZERO-FREQUENCY 
APPROXIMATION 

We first describe the method of calculation of Pn(r), 
which is C~n multiplied by the number of ^-step paths 
from one point to another at a distance r from the 
first. Choose r = a^ ^%x% where the x* are unit cube axis 
vectors and the ki are integers. Each step in a path can 
be represented by a symbol such as (OH—) or ( 0) ; 
the symbol (OH—), for example, signifies no displace
ment in the xi direction and positive and negative 
displacements, respectively, in the #2 and #3 directions. 
A path of n steps can be represented by an array of n 
such symbols. Such an array has 3 columns and n 
rows. Each row must have one and only one zero, so 
there are n zeros. If there are n—n\ zeros in the first 
column, n—fi2 in the second, and n—nz in the third, 
then there are n\/(n—ni)l(n—fi2)\(n—nz)\ distinct 
ways to distribute the n zeros under this requirement. 
The number tii is the number of steps in the i n 
direction, so such a path can connect the origin with 
r only if for all i, ni is odd or even as ki is odd or even. 
In that case, there are 

„ /Y (ni—ki\ /fii+kA 
(Al) 

ways to distribute pluses and minuses on the array to 

have the path end on r, because the number of ± signs 
in the ith column must be ^(nutki). Summing over all 
allowed fii we have 

r /ni+ki\ /fii—ki\ 
(A2) 

19 D. F. Holcomb and R. E. Norberg, Phys. Rev. 98, 1074 
(1955). 

Here n% = 2n—n\—n<i\ terms in the summation for 
which any of the \{ni— ki) is negative or nonintegral 
are to be taken as zero. To obtain the quoted values of 
Z(r), Pn was computed for w<10; for n>\0 an asym
ptotic expression was used which is based on the fact 
that for large n the overwhelming majority of paths 
will have all tii approximately equal to \n. The pro
bability of a net displacement of ki steps during a one-
dimensional random walk of \n steps is (3/irn) exp 
(—3ki2/4n) for large n, so that in the three-dimensional 
case we have 

/ 3 \ 3 / 2 / 3r2 \ 
Pn(r) = i( — ) exp ) . (A3) 

\irn/ \ 4nao2/ 

The factor J is required because, for a randomly chosen 
set of tii subject to the condition J2 ni=2n, there is a 
probability \ of fulfilling the condition that, for all i, 
fii be odd or even as ki is odd or even. The expression 
(A3) was integrated from n= 10.5 to infinity to estimate 
the terms in (28) for n> 10. The part of the summation 
for n> 10 is about 0.14 for r<2ao. 

The evaluation of (27) was carried out point by point 
for l=m in the first three shells, and also for rZm=V2#0 

with either n or rm in the first shell. By a "shell" we 
mean a set of points equidistant from the origin. In 
what follows we will use the abbreviation (l) = l to 
mean that point I is in the first shell. 

All other terms in (27) were treated by an approxima
tion in which a magnetic field orientation average was 
first taken; thus these other terms were assumed iso
tropic. However, in the case of the sum for unlike 
neighbors the Fim

i0) are identically zero if Ho is in the 
£111] direction and either (/) or (tn) = l, or if Ho is in 
the [100] direction and either (I) or (m) = 2. The exact 
angular variation of all terms of the sum involving these 
shells was inferred using the angular form (23). 

In order to perform the field average, the value of 
(Fimiq)) given by (31) was used. To obtain (31), the 
Fim

{q) are written in vector form [e.g., Eq. (24)] and 
then rewritten in terms of components of rz, rm, and 
Ho in a Cartesian coordinate system for which ti is 
along the Z axis and rm is in the x-z plane. Taking the 
spherical average of the products of direction cosines of 
Ho occurring in this expression, we readily obtain (31). 
Equation (31) was used for those /, m for which either 
(I) or (m) = l and rjm>v2ao, and also for l=m7 (l)>3. 
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Those terms l^m, for which (I), (m)>l and those for 
which either (I) or (m)>3 were averaged over orienta
tion of r% with respect to rm. This is a good approxima
tion for most shells of neighbors which contain many 
points. The quantity F?m

(0)Z(rZm) for these points was 
replaced by 

= (i(f cos2aZm— \)rrhm~z (3a0/2xrZm)> 

6 
= • if n>rm. (A4) 

Here the inner angular bracket on Fim
{0) is the field 

average previously introduced in connection with (31), 
and the outer bracket represents the angular average 
over the direction of xh keeping xm fixed, and keeping 
the magnitudes Yi and Ym fixed. Note that the asymp
totic expression for Z(Y) is used in (A4). This integra
tion is straightforward. When (/) = (m) the expression 
above was multiplied by (1—5nr1/2), where m is the 
number of points at radius YX\ the term — 5nr1/2 results 
from the exclusion, in the spherical average over rz 

orientation, of a region near r z=rm occupying 1/tii of 
the total solid angle. This exclusion was made to avoid 
double counting of points for l=m which were already 
summed above, and to avoid the region of integration 
Yim~0 where the asymptotic expression for Z(Yim) was 
invalid. 

Finally, the contribution of points for which either 
(I) or (m)>7 was approximated by 

6 2p C^^TTYHY 

— L - / 
25x m YmJRs YQ 

6 r00 /2p2 rzc^wY2dY\ 
+ / 47rr/2 — / — )dYf. (A5) 

2STTJRS \Y' Jr, r6 / 

The sum over m is taken over all (m) < 7 and Rs is the 
radius of a sphere whose volume equals that of the first 
seven shells. The quantity p is the density of points in 
the lattice, i.e., l/2ao3. The first term in (A5) approxi
mates the sum over pairs I, m for which one member of 
the pair is within Rs and the other is outside; the factor 
2 is included because each pair must be summed twice 
in (27). The second term approximates the sum for 
both I and m outside Rs. 


